representation of algebras
- 网络代数的表示
-
As an important branch of mathematics , the theory of representation of algebras was developed in the seventies of the twentieth century and mainly studies the structure of finite-dimensional algebra , indecomposable representation and the construction of module category .
代数表示论则是兴起于二十世纪七十年代的一个重要数学分支,主要研究有限维代数的结构,不可分解表示和模范畴的构造。
-
Some New Results on Representation Theory of Algebras
代数表示理论的若干研究成果
-
Some New Advances in the Representation Theory of Algebras
代数表示论的某些新进展
-
An Introduction and Survey on Representation Theory of Algebras
代数表示论简介与综述
-
Quivers have played an important role in the representation theory of algebras .
quiver在代数表示论中起着非常重要的作用。
-
Determination of representation type of algebras is an important task in representation theory of algebras .
判定代数表示型是代数表示论中的一个重要课题。
-
Central idempotent elements of and the representation of Boolean algebras
环的中心幂等元与Boolean代数的表示
-
On Separable Extensions and Representation Type of Algebras
关于代数的分离扩张和表示型
-
The theory of envelopes and covers takes an important part in theory of rings and modules , homological algebra , representation theory of algebras and so on .
因而模的包络、复盖理论在环模理论、同调代数和代数表示论中都有着非常重要的作用。
-
Matrix representation of the Clifford Algebras
Clifford代数的矩阵表示
-
Therefore , the subdirect product representation theorem of Stone algebras is equivalent to the prime ideal theorem ( PIT ) .
因而Stone代数次直积表示定理等价于质理想定理。
-
Representation Theory of Artin Algebras is a subject in which one mostly studies structures of finite dimension algebras , indecomposable representations and global construction of module categories .
代数表示论主要研究有限维代数的结构、不可分解表示和模范畴的构造。
-
A Representation of Lattice H Implication Algebras on Molecule Set
格H蕴涵代数在分子集上的表现
-
Consequently , it becomes an interesting and urgent task to study the properties and the representation theory of these Hopf algebras .
进一步地研究这些Hopf代数的性质和表示就成为人们非常关注且急于解决的一个问题。
-
Classification and Representation of Kleene - Stone Algebras
Kleene-Stone代数的分类及其表示
-
The representation theory of finite dimensional algebras has been developed for over three decades . Its important ideas and techniques turn out to be very useful in many branchs of mathematics .
有限维代数的表示经过三十多年的发展,其方法和工具已渐渐渗透到数学的其它分支。